论文部分内容阅读
纤维素酶解效率是木质纤维素高效生物转化的限制瓶颈,利用原子力显微镜(atomic force microscope,AFM)可以在水相中原位可视化表征纤维素酶分子运动行为,分析单个酶分子的运动速度及其影响因素.研究发现,高效降解结晶纤维素酶分子仅结合于特定结晶表面上的特定位点上,通过单方向运动完成逐层降解,过量酶分子结合于特定表面上会导致持续性运动“塞车”现象.结晶微纤丝的降解不仅取决于酶分子运动速度及其糖苷键断裂效率,更取决于酶分子可及底物的晶面大小及其晶面氢键解聚程度.以新结合模式、新运动模式或新组织模式的纤维素酶系或复合体应是纤维素酶研究的重点方向.
Cellulose enzymolysis efficiency is the limiting bottleneck of lignocellulose efficient biotransformation. Using atomic force microscope (AFM), we can visualize the molecular motion of cellulase in situ in water phase, and analyze the movement speed of single enzyme molecule and its Influencing factors.It has been found that the highly degradable crystalline cellulase molecules only bind to specific sites on a specific crystal surface and degrade through unidirectional movement and the excessive enzyme molecules bind to a specific surface will lead to persistent movement “ Traffic jam. ”The degradation of crystalline microfibrils depends not only on the speed of the enzyme molecule and the cleavage efficiency of the glycosidic bond but also on the size of the crystal plane of the substrate accessible to the enzyme and the degree of hydrogen bond dissociation at its crystal face. Cellulase systems or complexes that bind to patterns, new patterns of movement, or new patterns of organization should be the focus of cellulase research.