论文部分内容阅读
With the explosive growth of information sources available on the World Wide Web, how to combine the results of multiple search engines has become a valuable problem. In this paper, a search strategy based on genetic simulated annealing for search engines in Web mining is proposed. According to the pro-posed strategy, there exists some important relationship among Web statistical studies, search engines and optimization techniques. We have proven experimentally the relevance of our approach to the presented queries by comparing the qualities of output pages with those of the original downloaded pages, as the number of iterations increases better results are obtained with reasonable execution time.
With the explosive growth of information sources available on the World Wide Web, how to combine the results of multiple search engines has become a valuable problem. In this paper, a search strategy based on genetic simulated annealing for search engines in Web mining is proposed. According to the pro-posed strategy, there exists some important relationship among Web statistical studies, search engines and optimization techniques. We have proven experimentally the relevance of our approach to the presented queries by comparing the qualities of output pages with those of the original downloaded pages, as the number of iterations increases better results are obtained with reasonable execution time.