论文部分内容阅读
利用同位素模型预测甲烷、乙烷和丙烷的δ~(13)C值(干酪根/油生成气态物的程度指标),并用于指示Ⅱ型干酪根的生气特征。通过把气体的多组份动力学模型与同位素模型相结合,可得到气体组份转化率与生成温度之间的相关性。δ~(13)C_1,δ~(13)C_2和δ~(13)C_3之间的关系式利用天然气的热解模型进行限制。通过西得克萨斯Delaware和Val Verde盆地海相腐泥型页岩(Ⅱ型干酪根)生成的气体数据对同位素模型进行验证与校对。这些气体相对不受运移和生物气的混合影响,所以,气体碳同位素比值的变化能初步反映成熟度的演化程度。因此,这些数据对解释气体生成温度和来源于Ⅱ型干酪根的气体δ~(13)C值是有实际价值的。
Isotope models are used to predict the δ ~ (13) C values of methane, ethane and propane (kurtosis index of kerogen / oil formation) and to indicate the kerogen character of type Ⅱ kerogen. By combining the gas multi-component kinetic model with the isotope model, the correlation between the gas component conversion and the formation temperature can be obtained. The relationship between δ ~ (13) C_1, δ ~ (13) C_2 and δ ~ (13) C_3 is limited by the pyrolysis model of natural gas. Isotopic models were validated and calibrated using gas data generated from marine sapropel shale (Type II kerogen) in the Delaware and Val Verde basins of West Texas. These gases are relatively unaffected by the combination of migration and biogas. Therefore, the change of carbon isotope ratio can reflect the evolution of maturity. Therefore, these data are of practical value for explaining the gas formation temperature and δ ~ (13) C value of gas derived from Type II kerogen.