论文部分内容阅读
针对高速公路视频监控中基于单一形状特征的车辆检测算法出现较多的误检,且运用支持向量机(SVM)滑动窗口检测存在耗时大的问题,提出一种基于快速提取物体目标候选窗口的融合HOG-LBP特征的车辆检测方法。首先基于二值化规范梯度特征(BING)方法及背景差分快速提取车辆候选窗口,再计算候选窗口图像的方向梯度直方图(HOG)特征和局部二值模式(LBP)特征并进行特征融合,结合SVM分类器进行车辆检测。实验结果表明,融合形状和纹理特征能够有效提高车辆检测性能,而通过快速提取候选窗口可以将SVM检测速度提升8倍