论文部分内容阅读
传统的同时定位与地图构建(SLAM)算法存在着易受动态物体影响和无法提取场景语义信息的问题.为了解决上述问题,提出了一种动态环境下的室外3维语义地图的构建方法.首先在语义分割方面,提出一种基于全卷积网络(fully convolutional network, FCN)和超像素的条件随机场(conditional random field, CRF)对图像进行语义分割,并结合语义信息和对极约束剔除动态物体上的特征点.然后,利用视觉里程计估计相机的运动轨迹,并利用单目深度估计算法获取深度数据,通过深度