论文部分内容阅读
在短文本分类中,面对特征稀疏的短文本,如何充分利用文本中的每一个词语成为关键.本文提出概率语义分布模型的思想,首先通过查询词矢量词典,将文本转换为词矢量数据;其次,在概率语义分布模型的假设下利用混合高斯模型对无标注的文本数据进行通用背景语义模型训练;利用训练数据对通用模型进行自适应得到各个领域的目标领域语义分布模型;最后,在测试过程中,计算短文本属于领域模型的概率,得到最终的分类结果.实验结果表明,本文提出的方法能够从一定程度上利用短文本所提供的信息,有效降低了对训练数据的依赖性,相比于支持向量机(Sup