论文部分内容阅读
水环境是一个充满不确定性的复杂巨系统,传统水质模型很难体现重金属污染物在河流中迁移的随机性,因此经典的时间序列模型——ARIMA模型被应用于河流重金属污染浓度的预测。实例分析证实,通过采用将荻得的最新数据不断地添加到用于模型设定的样本中,并再此基础上获得最近向前一个时期预测值的动态预测方法,ARIMA模型能够获得很好的预测表现,尤其是在充分考虑模型残差统计分布特征的情况下,采用具有学生t分布的模型预测更精确。