论文部分内容阅读
针对不同训练样本重要性的差异对模型推广能力的影响,提出了对各个样本的误差惩罚参数赋予不同权重的加权支持向量机求解路径算法.根据样本重要性的不同,利用分段线性插值得到加权系数,并通过加权系数调整求解路径,从而改变不同样本在回归模型中的作用.采用支持向量机加权求解路径算法对圆柱壳结构在不同边界条件下的时、频域响应数据进行预测,训练样本的重要性通过与测试样本的欧式距离来表达,结果显示所提算法可减小位移响应在多个评价指标下的预测误差,提高支持向量回归机的推广能力.该方法同样适用于其他求解路径算法,如λ-路径算法和