步进电机与伺服电机的综合比较

来源 :知识文库 | 被引量 : 1次 | 上传用户:zz33xx
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
步进电机和伺服电机是自动化工业生产中常用的执行电机,其应用领域十分相似,但事实上两者之间是存在一定差异的,本文通过说明两者之间的特点和工作原理,进一步分析了两者之间的区别,给实际生产运用提供了参考。一、步进电机和伺服电机的主要特点(一)步进电机的主要特点1.步进电机没有积累误差。一般来说,步进电机的精度大约是其实际步距角的3~5%,且不会累积。2.步进电机在工作时,电脉冲信号会按一定顺序(例如
其他文献
非球形粒子由于几何形状的不对称性使得其范德华力、电荷分布和曲率也呈现低对称性,从而呈现出优异的理化性能,在光子晶体、特殊涂层、生物医学和新材料的构造等领域具有巨大的应用价值。本文通过种子分散聚合反应精确控制合成不同形貌的凹面非球形粒子,提出了凹面非球形粒子的形成机理,并研究了凹面非球形粒子的自组装行为。(1)一步分散聚合法制备球形聚苯乙烯粒子。分散聚合分两个阶段,通过调整第一阶段和第二阶段苯乙烯(
联用多种具有协同效应的化疗药物是克服肿瘤耐药性、降低化疗毒副作用的重要方式,药物联用效果与实际作用于靶点的药物剂量比例密切相关。为最大程度发挥协同效果,应用于协同化疗的递送载体需要以稳定可控的载药比例递送药物,并于靶点位置以相同的比例释放药物。目前,纳米载体在药物递送的靶向性、响应性等方面的研究已较为深入,但少有能实现以稳定且可控的比例释放药物的案例,其中载体对具有不同理化性质的药物的“差异束缚力
质子交换膜燃料电池(PEMFC)具有能量转换效率高、零污染、能在低温下快速启动等优点,能够广泛地应用于交通运输、便捷式电源、发电站、航空/航天以及水下潜艇等军用和民用领域,因此近年来越来越受到各国政府及研究团队的关注。在各国政府的积极推动下,PEMFC得到了很大的发展,但要真正实现PEMFC的大规模商业化目前尚面临成本高及耐久性不足的挑战。目前PEMFC高成本的主要原因是需要使用价格昂贵的贵金属催
量子点独特的光电性能优异性在生物成像、医学治疗、传感、电池、显示与照明等领域有相关应用。量子点极易因温度升高而发生荧光淬灭现象,目前主要应用在小功率场合。量子点热稳定性差的难题制约了量子点大功率应用的发展。针对上述问题,本文设计了新型液态量子点循环冷却光转化器用于大功率激光照明。通过量子点外部压力驱动,内部相变驱动两种流动循环方式,对大功率激光激发状态下液态量子点进行温度控制,实现了液态量子点在大
随着对无线通信系统的深入研究,对射频前端设备的要来越高,小型化与集成化是其发展的趋势。滤波天线与双工天线的设计可以使设备的集成化,也能降低射频前端系统的损耗。本文所研究的滤波天线与双工天线采用交叉耦合的方法实现高频率选择性以及隔离度。同时,对天线采用对称激励的方式提高其交叉极化性能。本文的工作可以概况为以下三个方面:1、提出了一种基于源-天线交叉耦合的滤波天线。两个微带谐振器通过缝隙耦合构成二阶带
命名实体识别(Named Entity Recognition,NER)是自然语言处理工作中的一项基础任务,其目标是在待处理的文本中识别出具有特定意义的单词或者短语。命名实体识别是许多下游任务的关键前置任务,如关系抽取、共指消解、文本分类等任务,命名实体的质量会极大影响这些任务的效果。当前流行的命名实体识别模型主要是基于序列标注的深度学习模型,这些模型受限于马尔科夫假设,导致神经网络仅学习到标签之
语音去混响是指,从声学信号中减少或消除由所有反射声波的总和叠加而成的混响。语音去混响和语音降噪同属于语音增强的范畴,而几乎所有的智能语音系统都要用到语音增强作为前端处理技术。目前语音增强技术中研究得最多的是语音降噪,然而语音混响现象几乎存在于任何封闭的空间,强混响会对麦克风接收的信号产生严重的负面影响。随着计算机的算力飞跃提升,基于深度学习的方法被广泛应用于图像和语音信号处理,然而这些方法大多数只
在工业生产中,为了防止机械设备突发故障停机而导致巨大损失,需要及时获取机械设备的健康状态信息以制定运行维修计划。近年来,众多学者对基于数据驱动的故障诊断与故障预测进行了广泛地研究。然而,现有方法在实际应用中仍存在诸多挑战:实际中,正常状态的样本要远远多于异常状态,类别不平衡极易导致诊断模型难以训练,泛化性能差;基于传统卷积神经网络的故障预测方法无法提取多尺度特征,也无法实现多源传感器时序信息的融合
糠醛(Furfural)是一种重要的生物基平台化合物,由木糖脱水制备得到。糠醛分子中含有高活性的呋喃环和甲酰基,经过氧化、还原、烷基化等反应可生成一系列高附加值化学品,这些化学品被广泛用于高分子、化工、医药及食品等领域。目前,糠醛可以通过光催化制得5-羟基-2(5H)呋喃酮(5-hydroxy-2(5H)furanone,HFO),但是在温和的条件下实现HFO的开环和异构化合成富马酸半醛(Fuma
近年来,随着移动互联网的迅猛发展,人们步入了信息爆炸时代。推荐系统作为缓解“信息过载”问题的有效手段之一,不仅可以快速地为用户提供感兴趣的信息,同时也蕴藏着巨大的商业价值。矩阵补全(Matrix Completion)是构建推荐系统的核心技术之一,其目标是对含缺失值的矩阵进行填充。在评分数据高维稀疏的背景下,本文主要针对基于传统矩阵分解的以及基于深度图神经网络的矩阵补全推荐方法存在的局限性展开研究