论文部分内容阅读
微博用户转发行为预测是微博社交网络消息扩散模型构建的基础,在舆情监控、市场营销与政治选举等领域有着广泛的应用.为了提高用户转发行为预测的精度,本文在MRF(Markov Random Field)能量优化框架下综合分析了用户属性与微博内容特征、用户转发行为约束、群体转发先验等因素对用户转发行为的影响,并在逻辑回归模型的基础上构造了相应的能量函数对用户转发行为进行了全局性的预测.实验结果表明,微博用户转发行为不仅取决于用户属性、微博内容等特征,而且也受到用户转发行为约束、群体转发先验等因素不同程度的影响.相对于传统算法,本文算法可以更准确地对用户转发行为进行建模,因而可获得更好的预测结果.