论文部分内容阅读
为降低火灾自动报警系统的误报、漏报率,基于BP神经网络算法,用LabVIEW虚拟仪器开发了一套智能火灾识别模型。在火灾探测区域内合理布置若干感温探测器,在火灾识别模型中,将探测到的温度场参数作为BP神经网络的输入,火灾发生与否作为输出,并对影响BP神经网络的各项参数和该模型的运行结果进行测试研究。仿真试验结果表明:选取42组训练样本,当网络训练到4 000次左右时,最大相对误差值达到目标值0.1,其中大部分相对误差值达到0.05以下,网络的实际输出值非常逼近样本的理想输出值;实际火灾试验表明:该火灾