论文部分内容阅读
首先对薄板弯曲平衡方程的弱形式进行了推导,导出保证单元收敛的弱协调条件,即三角形顶点函数值连续和三边的法向导数积分连续这两个条件;对比拟协调元、广义协调元和双参数法中所使用的3个积分连续条件,本条件更弱;再对这3个积分协调条件的构成方法进行了总结和分析,现有采用积分连续条件构造的有限元大都采用了这些构成方法.采用弱协调条件构造有限元,比原来的构造范围更广,并以此构造出几种单元作为算例.采用这种构成法还可构造多种单元,它们都具有采用最小势能原理法构成有限元的简便的优点,并在任意网格下收敛到真解.