论文部分内容阅读
变电站设备多、投入资金大,建立合理的变电站LCC预测模型,是提高电网资产管理效率的重要手段,其中如何保证算法收敛能力和模型预测精度是目前的研究难点.建立了基于GA优化最小二乘支持向量机的变电站LCC预测模型,选取变电站全寿命周期各阶段的一些具有代表性的指标作为预测模型输入向量,变电站LCC总成本作为输出向量.通过算例,对比了传统LS-SVM预测模型、BP神经网络预测模型和GA优化LS-SVM预测模型的预测结果及性能指标,验证了GA优化LS-SVM预测模型性能的优越性,以便在新建变电站时,实现快速、高效的变