论文部分内容阅读
This paper focuses on the design of two-dimensional (2D) quadrantally symmetric finite impulse response (FIR) filters, and presents three very efficient algorithms for the weighted least squares (WLS) design with a weight matrix that assigns four different weights to four different frequency bands. The first algorithm seeks for iterative solutions to the matrix equation describing the optimality condition of the design problem. The second algorithm aims at the limit solution of the solution sequence to the first algorithm, analytically obtained by using matrix diagonalization techniques. The third algorithm belongs to the category of iterative reweighting techniques. It uses the second algorithm as its iteration core, and aims at reducing the maximum magnitude error of the filter by iteratively adjusting the four entry values of the weight matrix. Design examples are provided to demonstrate the performance of the proposed algorithms.
This paper focuses on the design of two-dimensional (2D) quadrantally symmetric finite impulse response (FIR) filters, and presents three very efficient algorithms for the weighted least squares (WLS) design with a weight matrix that assigns four different weights to four different The first algorithm seeks for iterative solutions to the matrix equation describing the optimality condition of the design problem. The second algorithm aims at the limit solution of the solution sequence to the first algorithm, analytically obtained by using matrix diagonalization techniques. The third algorithm belongs to the category of iterative reweighting techniques. It uses the second algorithm as its iteration core, and aims at reducing the maximum magnitude error of the filter by iteratively adjusting the four entry values of the weight matrix. Design examples are provided to demonstrate the performance of the proposed algorithms.