论文部分内容阅读
在先验知识不完备和不确定的情况下,针对海量数据造成的冗余和互斥,模糊神经网络结构变得复杂化且不能很快逼近和分类输出对象的情况,提出了一种基于高阶谱规则约简的变结构模糊神经网络模型.相同结论属性的模糊规则的条件属性值,可以被认为是由若干个谐波组成的平稳信号,并且此信号可以采用高阶谱分析来估计其谐波成分,规则的最小约简集与谐波对应.在完成了谐波估计后,神经网络结构和连接权值发生改变,神经网络的性能也得到优化.最后给出了此模型在航迹融合中应用的一个例子,得到了较好的结果.