【摘 要】
:
近年来,非线性分数阶系统的参数估计问题已经在许多科学和工程领域特别是计算生物学中,引起了广泛的兴趣.本文针对分数阶生物系统的参数估计问题,将系统参数和分数阶导数同时
【机 构】
:
北京交通大学理学院,西北工业大学理学院
【基金项目】
:
the Fundamental Research Funds for the Central Universities(2017YJS200),the China Scholarship Council(201807090092),the National Nature Science Foundation of China(61772063).
论文部分内容阅读
近年来,非线性分数阶系统的参数估计问题已经在许多科学和工程领域特别是计算生物学中,引起了广泛的兴趣.本文针对分数阶生物系统的参数估计问题,将系统参数和分数阶导数同时作为独立的未知参数来进行估计,并提出了一种改进的布谷鸟搜索(improved cuckoo search,ICS)算法来求解该问题.在ICS算法中,通过引入一个自适应参数控制机制,同时结合反向学习方法,从而达到提高算法收敛速度和估计值精度的目的.最后,以三种经典的分数阶生物动力系统模型为例进行了数值仿真,其中还考虑了有测量误差和噪声数据的情形.
其他文献
传统特征的片面性,传统跟踪模型对于模型漂移问题检测手段和补救措施的缺乏,限制着传统跟踪算法的性能.因此,本文提出了一种残差深度特征和漂移检测的核相关滤波跟踪算法.通过卷积神经网络提取分层特征,在卷积神经网络加入残差结构,连接不同的网络层,实现浅层和深层特征的融合.不需要人为设计特征融合方式,网络结构能够自动实现特征融合的功能.用深度特征区分目标和背景,比传统特征更具有分辨力,跟踪结果更精确;在预测