论文部分内容阅读
针对传统文本相似度计算方法中,词语权重定义TF-IDF方法仅考虑词频信息,而没有考虑特征词在文本中的位置因子,提出了相应的改进方法。另外,在建立文本向量模型,选择特征词时,对于与高权值词语有较高共现率、语义相近的潜在特征词也进行了深入的分析与挖掘。最后,结合几种常见的传统特征选择方法对特征集合进行精简、优化,更加准确的建立了文本向量模型,实验结果表明了改进后算法的有效性和可靠性。