论文部分内容阅读
提出一种基于状态自动机的突发特征检测算法,针对微博数据长度小,语言不规范,噪声大,数据量大的特点,优化预处理过程和状态自动机模型参数;提出一种突发话题聚类算法,对特征词的词频向量表示进行改进,并引入基于词激活力(WAF)的词法特征,使得聚类效果更加准确,得到的突发话题可读性更强。最后通过实验方法验证了算法的可行性。