非一致性引导的无监督特征选择

来源 :计算机应用研究 | 被引量 : 0次 | 上传用户:bjzmht
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
由于无监督环境下特征选择缺少类别信息的依赖,所以利用模糊粗糙集理论提出一种非一致性度量方法DAM(disagreement measure),用于度量任意两个特征集合或特征间引起的模糊等价类含义的差异程度。在此基础上实现DAMUFS无监督特征选择算法,其在无监督条件下可以选择出包含更多信息量的特征子集,同时还保证特征子集中属性冗余度尽可能小。实验将DAMUFS算法与一些无监督以及有监督特征选择算法在多个数据集上进行分类性能比较,结果证明了DAMUFS的有效性。
其他文献
针对属性值为Pythagorean模糊语言,属性权重未知且考虑群体一致性和决策者属性偏好不确定性的决策问题,探讨了一种考虑信任度的两阶段交互多属性群决策方法。首先,考虑决策者偏好,将属性集分为必选属性集和可选属性集;其次,构建两阶段交互机制以确保必选属性集的群体一致性达到阈值,第一阶段以提升群体共识水平为目标进行交互,第二阶段以降低冲突水平为目标进行交互;再次,同时考虑交互的积累稳定性和积累影响因
考虑移动边缘计算下的联邦学习,其中全局服务器通过网络连接大量移动设备共同训练深度神经网络模型。全局类别不平衡和设备本地类别不平衡的数据分布往往会导致标准联邦平均算法性能下降。提出了一种基于组合式多臂老虎机在线学习算法框架的设备选择算法,并设计了一种类别估计方案。通过每一轮通信中选取与前次全局模型的类别测试性能偏移最互补的设备子集,使得训练后线性组合的全局模型各类别测试性能更平衡,从而获得更快的收敛
为了提高个性化推荐的准确性和质量,针对传统推荐算法的信息过载和数据稀疏性问题,构建了基于SVD与直觉模糊聚类的协同过滤推荐算法(SVDIFC-CF)。算法首先引入SVD将降维后的原始矩阵进行填充;再运用用户商品喜好矩阵将用户进行直觉模糊聚类;最后计算与目标用户相似度最高的前N个用户,找到用户最感兴趣的项目作为推荐结果。采用MovieLens与Jester数据集对算法的有效性进行验证,实验结果表明相
Web服务作为无形的产品,不具备真实环境下的空间地理位置坐标,针对服务推荐中无法衡量用户群体与Web服务之间的距离位置关系,造成用户相似度计算失衡,导致推荐不准确等问题,提出了基于用户空间位置评分云模型的Web服务协同过滤推荐算法。首先基于用户群体的行为数据量化Web服务的热度区域,通过空间位置量化评分描述用户对于Web服务的兴趣偏好;其次利用云模型来描述每个用户空间行为评分的整体特征,设计了云模
针对大数据环境下基于Can树(canonical order tree)的增量关联规则算法存在树结构空间占用过大、频繁模式挖掘效率不佳以及MapReduce集群并行化性能不足等问题,提出了一种基于粗糙集和归并剪枝方法改进的并行关联规则增量挖掘算法MR-PARIRM(MapReduce-based parallel association rules incremental mining algor
子空间聚类通常可以很好地处理高维数据,但由于数据本身的噪声等的影响,系数矩阵的块对角线结构往往容易被破坏。针对上述问题,提出了一种标记判别和局部线性强化的半监督稀疏子空间聚类。一方面,通过约束标记数据之间的系数为0,更好地捕获数据的全局结构;另一方面,通过K近邻关系加强数据邻近点之间的局部相关性,同时消除大量不相关的数据点,增强算法的鲁棒性。通过在多种数据上的实验,验证了提出的半监督聚类算法的有效
当前融合评分和标签的推荐方法对两种数据的挖掘程度有限,且大多数局限在提取浅层的线性特征层面。深度学习技术被成功应用于推荐方法,然而数据的稀疏性导致学习的潜在特征效果不好,因此,提出一种融合评分和社会化标签的两阶段深度推荐方法。首先,利用堆叠降噪自编码器分别从评分和社会化标签中提取用户、项目的潜在特征;其次,将学习的潜在特征进行拼接作为用户、项目完整的潜在特征,并与原始评分相结合构建监督学习数据集;
哈希编码能够节省存储空间、提高检索效率,已引起广泛关注。提出一种成对相似度迁移哈希方法(pairwise similarity transferring hash,PSTH)用于无监督跨模态检索。对于每个模态,PSTH将可靠的模态内成对相似度迁移到汉明空间,使哈希编码继承原始空间的成对相似度,从而学习各模态数据对应的哈希编码;此外,PSTH重建相似度值而不是相似度关系,使得训练过程可以分批进行;与
胶囊网络(CapsNet)强调对图像特征的空间关系进行编码,但是其特征提取模块难以应对复杂分类场景。为了提升CapsNet的性能,提出了一种具有自注意力(self-attention)特征提取模块的胶囊网络(self-attention capsule network,SA-CapsNet)。首先通过降低胶囊维度,并增加一个中间层来改进CapsNet;然后将SA模块映射到胶囊网络的特征提取层,增加
针对现有的图自编码器无法捕捉图中节点之间的上下文信息的问题,提出基于重启随机游走的图自编码器。首先,构造两层图卷积网络编码图的拓扑结构和特征,同时进行重启随机游走捕捉节点之间的上下文信息;其次,为了聚合重启随机游走和图卷积网络获得的表示,设计自适应学习策略,根据两种表示的重要性自适应地分配权重。为了证明该方法的有效性,将图最终的表示应用于节点聚类和链路预测任务。实验结果表明,与基线方法相比,提出的