论文部分内容阅读
我们对晶态C_(60),K_3C_(60),K_6C_(60),Rb_3C_(60),Rb_6C_(60),RbCs_2C_(60),Rb_2CsC_(60),KRb_2C_(60),K_2CsC_(60),K_2RbC_(60),Na_2CsC_(60),Li_2CsC_(60),Na_2RbC_(60)和Na_2KC_(60)进行了三维EHMO晶体轨道的能带结构计算.我们的计算结果除了得到能带结构外,还得到了这类掺杂物的总态密度、原子与轨道净电荷、晶体轨道矢量、单胞内外原子与轨道重迭布居和原子与轨道投影态密度等结果.利用上述结果我们不仅可以从理论上说明A_3C_(60)的超导性以及C_(60)与C_(60)的绝缘性(A表示碱金属);而且从我们的计算结果可以得到ln(l/T_c)和-l/N_(Ef)之间有一种近似的线性关系,这个结论与BCS理论的预测非常吻合.
In this paper, we have studied the effects of the crystalline C 60, K 3 C 60, K 6 C 60, Rb 3 C 60, Rb 6 C 60, RbCs 2 C 60, Rb 2 CsC 60, KRb 2 C 60, K 2 CsC 60, K 2 RbC (60), Na_2CsC_ (60), Li_2CsC_ (60), Na_2RbC_ (60) and Na_2KC_ (60) were used to calculate the energy band structure of the three-dimensional EHMO crystal orbit.Our results obtained in addition to the band structure The total state density of dopant, the net charge of the atom and the orbit, the orbital vector of the crystal, the population of atomic and orbital overlap and the projected density of the atom and the orbit, etc. We can not only theoretically explain the A_3C_ (60) and C 60 insulation (A represents alkali metal); and from our calculations, ln (l / T_c) and -l / N_ (Ef) There is an approximate linear relationship between this conclusion and BCS theory is very consistent forecast.