论文部分内容阅读
A generalized model is synthesized to characterize the asymmetric hysteresis force-velocity (F-v) properties of the magneto-rheological (MR) fluids damper.The model is represented as a function of the command current,excitation frequency,and displacement amplitude,based on the symmetric and asymmetric sigmoid functions.The symmetric hysteresis damping properties of the controllable MR-damper and properties of the conventional passive hydraulic damper can also be described by the proposed model.The validity of the model is verified by experiments,which show that the results calculated from the model are consistent with the measured data.In addition,it is shown that the model applies to a wide vibration frequency range.The proposed model has potential application in vehicle suspension design employing the symmetry MR-damper,and also in developing the asymmetry MR-damper especially for the vehicle suspension attenuation.