论文部分内容阅读
关联规则挖掘是数据挖掘的重要领域之一,目前多数监督学习算法对满足最小支持度和最小置信度的关联规则进行深入分析的较少。剖析了分类关联规则挖掘算法CAR-Apriori算法,并提出了一种基于多最小支持度和支持度差别限制的分类关联规则挖掘算法MSCAR-Apriori算法。实验结果表明,改进算法不仅可以挖掘出满足给定条件的分类关联规则,同时还可以保留稀有但用户感兴趣且可能蕴涵巨大利润的规则项。