论文部分内容阅读
为了精确地提取焊接缺陷,进一步提高缺陷检测的准确性,提出了一种基于改进ChanVese(CV)模型和脉冲耦合神经网络(pulse coupled neural network,PCNN)的非下采样Shearlet变换(non-subsampled Shearlet transform,NSST)域焊接缺陷提取方法。首先,对焊接缺陷图像进行NSST分解,对得到的低频分量采用PCNN提取出缺陷的主要区域;然后,利用背景抑制后的低频分量和高频分量构造出高频特征图像,并对其进行粗分割,再利用改进的CV模型寻