论文部分内容阅读
本文基于Gilmore空泡动力学模型,采用四阶Rung-Kutta法,对孔板空化器中壳聚糖溶液水力空化泡的动力学特性进行了数值模拟。考察了壳聚糖溶液浓度、溶液温度、孔板下游管道直径、孔板喉部直径、孔板入口压力、出口压力及空化泡初始半径对壳聚糖溶液中空化泡运动的影响。模拟结果显示,对单个空泡而言,壳聚糖溶液浓度越高,空化产生的空化效应强度越弱,当浓度达到1%时,Rmax/R0只有8;溶液的温度越高,空化的强度越大,当温度达到60℃时,Rmax/R0达到215;孔板下游管道直径越长,产生空化效应越强,当下游管道直径为100 mm时,Rmax/R0达到335;孔板喉部直径越小,空化效应越显著,当喉部直径为2 mm时,Rmax/R0为290;孔板压力范围为0.1~0.5 MPa之间,入口压力高,出口压力越低,空化效应越好;初始半径较小的空化泡对空化作用的贡献更大,当初始半径为5μm时,Rmax/R0为275。
Based on Gilmore’s bubble dynamics model, the fourth-order Rung-Kutta method is used to simulate the dynamics of cavitation bubbles in chitosan solution. The effects of concentration of chitosan solution, temperature of solution, diameter of pipe downstream of orifice, diameter of orifice of orifice, inlet pressure of orifice, outlet pressure and cavitation bubble initial radius on cavitation bubbles in chitosan solution were investigated. The simulation results show that for a single vacuole, the higher concentration of chitosan solution, the weaker the cavitation effect cavitation intensity, when the concentration reaches 1%, Rmax / R0 only 8; the solution temperature is higher, empty Rmax / R0 reaches 215 when the temperature reaches 60 ℃. The longer the diameter of the downstream pipe orifice, the stronger the cavitation effect. When the diameter of the downstream pipe is 100 mm, the Rmax / R0 reaches 335. The smaller the throat diameter, the more significant the cavitation effect. When the throat diameter is 2 mm, the Rmax / R0 is 290. The orifice pressure range is between 0.1 and 0.5 MPa. The inlet pressure is high and the outlet pressure is lower. The better the chemical reaction; the smaller the initial radius of the cavitation bubble contribute more to the cavitation, when the initial radius of 5μm, Rmax / R0 is 275.