【摘 要】
:
用二面角的两个面的“法向量的夹角”大小来计算“二面角”的大小,当不能辨别或很难辨别所求二面角是锐角还是钝角时,二者之间是“相等”或“互补”关系的判断自然也是一件难
论文部分内容阅读
用二面角的两个面的“法向量的夹角”大小来计算“二面角”的大小,当不能辨别或很难辨别所求二面角是锐角还是钝角时,二者之间是“相等”或“互补”关系的判断自然也是一件难事,直接关乎着答案的对或错;从思维层面上说,就是“转化与化归思想”运用得成功还是失败的问题.因此,课堂教学或解题实践过程中,务必要弄懂、弄通两角之间的内在联系.于是寻找一种切实可行且又易于操作的判定方法,便成了广大老师教学研讨的热点问题.基于此,笔者也提供一个观点或做法供参考,不妥之处,请不吝指教.
其他文献
重要不等式a2+ b2≥2ab,当b>0时,两边同除以b,再移项即可得a2/b2≥2a-b,当且仅当a=b时取得等号.叙述成“一个数的平方除以第二个数不小于第一个数的二倍减去第二个数”.此不等
形如f(x)=u(x)+v(x)/2+|u(x)-v(x)/2|有关最值的求参问题的解法,因其思维要求大、技巧性强而充满挑战性,它能较好反映考生数学运算、逻辑推理、分析和解决问题的能力,从而成
因为证券发行的核准制,我国普遍存在分拆上市方式。公司上市后,关联交易频繁,而通过关联交易进行并购也成为我国证券市场普遍现象。工程机械行业近年并购多发,关联并购也成为
通过对一道课本例题进行探究,得到平面内三点共线的一个结论,并举例说明其应用,再将其推广到空间.
广西行政法学研究会2019年学术研讨会的主题是“行政创新与行政法”.与会行政法学者、专家和实务工作者围绕大数据背景下政府基层治理创新、人工智能大数据云计算助力建设智
图形是直观想象的核心.分析了图形增减快慢、连续性、对称性、旋转不变性在解题中的应用.
本文分析了天山北麓不同海拔高度的两个黄土剖面粒度、磁化率特征及其古气候意义的差异性。结果表明,位于海拔2074m的鹿角湾剖面与海拔527m处的大佛寺剖面黄土粒度特征
通过对圆锥曲线的学习与研究,探索发现了圆锥曲线与通径、切线有关的一个统一漂亮的性质.
今年是《浙江骄傲》——年度最具影响力人物评选以来的第五个年头了。这一类型的片子在选题上有着很高的相似度,从故事结构、讲述语言上,本身的发挥空间就不大,而长时间的重
2017年全国Ⅰ卷理科第10题,是一道圆锥曲线的最值问题,主要考查了抛物线的定义、焦点弦,也考查了分析问题、解决问题的能力以及运算求解能力,具有很好的区分度.本文对这道试