论文部分内容阅读
针对传统PID算法参数最优或接近最优确定较为困难,提出一种量子粒子群(QPSO)优化PID参数的算法。并用平方误差矩积分函数作为适应度判据,以克服PID算法自适应能力较差及遗传算法(GA)优化效率不高,其局部搜索能力较弱的缺陷。并使用伺服电动机数学模型进行仿真,结果表明量子粒子群优化PID参数速度快,避免早熟缺陷,同时表明了所提出算法的有效性和所设计控制器的优越性。