论文部分内容阅读
稀疏表示和字典学习在图像去噪、图像重建和模式识别等应用上取得了良好的效果,其利用稀疏系数和重构误差来作为模式分类的判别准则。稀疏表示纹理分割方法是将图像分割问题转换为像素点的分类问题。但通常稀疏表示分类方法是基于图像块特征,难以准确表征图像纹理信息。为了解决上述问题,提出基于Gabor特征的稀疏表示纹理分割方法。因为Gabor特征对图像纹理信息的鲁棒性,算法首先从每类纹理中选择一些像素点作为训练样本,计算其不同尺度和方向下的Gabor特征,将其作为初始化字典,通过判别性的字典学习算法(D-KSVD)