论文部分内容阅读
多示例学习对处理各类歧义问题有较好的效果,将它应用于图像检索问题,提出了一种新的基于多示例学习的图像检索方法。首先提取每幅图像的局部区域特征,通过对这些特征聚类求得一组基向量,并利用它们对每个局部特征向量进行编码,接着使用均值漂移聚类算法对图像进行分割,根据局部特征点位置所对应的分割块划分特征编码到相应的子集,最后将每组编码子集聚合成一个向量,这样每幅图像对应一个多示例包。根据用户选择的图像生成正包和反包,采用多示例学习算法进行学习,取得了较为满意的结果。