论文部分内容阅读
在传统的RBM神经网络的基础上提出一种新颖的MD-RBM神经网络模型用于超高碳钢微结构高维图像数据的特征学习。该模型利用新的乘法距离(MD)取代欧式距离以计算高维图像数据之间的距离关系,有效缓解欧式距离在高维数据中的不稳定性问题。MD-RBM神经网络模型利用少量的成对约束监督信息引导其编码过程,使得一部分图像数据的隐藏层特征更加聚集在一起,而且同时使得一部分图像数据的隐藏层特征更加分散,由此得到高维图像数据的隐藏层特征表现出很好的聚类性能。实验选择两种经典聚类算法Affinity Propagati