论文部分内容阅读
传统网络异构的数据挖掘算法以数据间的关联性为基础进行聚类,当数据集中出现大量冗余数据时,数据间的关联性减弱,使得数据挖掘精确度降低。为解决这个问题,提出一种新的弱关联冗余环境下挖掘算法。该算法先通过数据聚类方法,确定大数据集的原始聚类中心,不断更新聚类中心确保其逼近真实中心,实现大数据集的数据聚类。再对大数据集的弱关联规则进行挖掘,计算弱关联规则下数据间的关联性,采用弱化关联规则方法,挖掘出弱关联冗余环境下的数据。实验结果表明:所提挖掘算法具有较高的挖掘效率和精度,以及较低的复杂度。