论文部分内容阅读
We study the asymptotic behavior of solutions to an evolutionary Ginzburg-Landau equation. We also study the dynamical law of Ginzburg-Landau vortices of this equation under the Neuman boundary conditions. Away from the vortices,we use some measure theoretic arguments used by F.H.Lin in [1] to show the strong convergence of solutions. This is a continuation of our earlier work [2].