多目标优化Knee前沿搜索方法研究进展

来源 :控制理论与应用 | 被引量 : 0次 | 上传用户:chrisliuyaqin
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
多目标优化算法是近年来进化计算研究领域的一个热点,大多数的多目标优化算法试图找到问题的完整的Pareto前沿.然而,随着待优化问题目标个数的增加,算法需要更大的种群规模才能合理地描绘出完整的Pareto前沿.显然这样不仅增加了算法的运行时间,更增加了(决策者)最终解的选择难度.因此,聚焦于搜索Pareto前沿上的特定区域显得尤为重要,近年来也得到了越来越多学者的关注.Knee点指的是Pareto前沿上具有最大边际效用的点,在这个点附近,一个目标值的微小提升将带来至少一个其他目标值的巨大衰退,因此该点通常被
其他文献
通过优化成分设计以及轧制、热处理工艺,成功开发出8 ~ 80 mm厚度的免涂装低屈强比耐候桥梁钢.针对免涂装低屈强比耐候桥梁钢的工艺、金相组织和焊接性进行分析研究,结果表明:
本文基于马尔科夫决策过程提出一种燃料电池汽车最优等效氢燃料消耗控制策略.控制策略以部分观测量为基础,以马尔科夫转移概率矩阵为条件,采用基于蒙特卡洛马尔科夫(MCMC)算法的Metropolis-Hastings采样方法,获得平均奖励输出,进而通过最优氢燃料消耗代价函数的优化以控制在氢燃料电池系统和动力电池系统间进行能量分配.该策略避免了目前燃料电池汽车控制策略过度依赖未来需求功率的预测以及预测模型的准确性.在建立燃料电池汽车动力模型,燃料电池系统和动力电池系统模型的基础上,进行了包含自学习系统、基于MH采