反向传播人造神经网络预测激光微孔表面粗糙度

来源 :激光与光电子学进展 | 被引量 : 0次 | 上传用户:xp1308729
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
对304不锈钢试样进行了激光打孔试验,使用形貌仪测得了孔截面粗糙度参数,并通过反向传播神经网络,建立了基于激光功率、脉冲频率和离焦量三个工艺参数与孔表面粗糙度之间关系的神经网络预测模型。利用大量试验数据对样本进行网络训练,证实了该人工神经网络模型预测精度高,预测误差控制在6%左右,最大误差不超过8.08%。该模型可以准确地预测激光打孔表面的粗糙度和有效地缩短激光打孔作业的准备周期。 The laser drilling test was carried out on the 304 stainless steel sample. The roughness parameters of the hole section were measured by using a profilometer. The three parameters of the laser power, the pulse frequency and the defocus amount were established through the back propagation neural network. Neural Network Prediction Model of Relationship Between Surface Roughness. Using a large amount of experimental data to conduct network training on the samples, it is proved that the artificial neural network model has high prediction accuracy, the prediction error is controlled at about 6% and the maximum error is no more than 8.08%. The model can accurately predict the roughness of laser drilling surface and effectively shorten the preparation period of laser drilling.
其他文献
漠西大葱获得中华人民共和国农业部2016年第一批农产品地理标志登记产品。本文重点就漠西大葱独特的产地环境、特定的生产方式、特有的产品品质、人文历史、发展前景及栽培技