Manipulating metal-insulator transitions of VO2 films via embedding Ag nanonet arrays

来源 :中国物理B(英文版) | 被引量 : 0次 | 上传用户:Free0412
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Manipulating metal-insulator transitions in strongly correlated materials is of great importance in condensed matter physics,with implications for both fundamental science and technology.Vanadium dioxide (VO2),as an ideal model system,is metallic at high temperatures and shown a typical metal-insulator structural phase transition at 341 K from rutile structure to monoclinic structure.This behavior has been absorbed tons of attention for years.However,how to control this phase transition is still challenging and little studied.Here we demonstrated that to control the Ag nanonet arrays(NAs) in monoclinic VO2(M) could be effective to adjust this metal-insulator transition.With the increase of Ag NAs volume fraction by reducing the template spheres size,the transition temperature (Tc) decreased from 68 ℃ to 51 ℃.The mechanism of Tc decrease was revealed as:the carrier density increases through the increase of Ag NAs volume fraction,and more free electrons injected into the VO2 films induced greater absorption energy at the internal nanometal-semiconductor junction.These results supply a new strategy to control the metal-insulator transitions in VO2,which must be instructive for the other strongly correlated materials and important for applications.
其他文献
According to the atmospheric pressure plasma (APP) technology,we propose a rapid synthetic approach of the sub-strates for enhanced Raman spectroscopy.The plasma is used to modify and etch the surface of silver film,which generates large scale hotspots\
A tunable metamaterial absorber (MA) with dual-broadband and high absorption properties at terahertz (THz) fre-quencies is designed in this work.The MA consists of a periodic array of flower-like monolayer graphene patterns at top,a SiO2 dielectric spacer
Coherent rainbows can be formed by focusing white-light laser into liquids.They are bilaterally symmetric interfer-ence rings with various shapes.Such interference rings arise from the temperature distribution of the liquid induced by laser heating,i.e.,t
One-dimensional particle simulations have been conducted to study the interaction between a radio-frequency elec-trostatic wave and electrons with bouncing motion.It is shown that bounce resonance heating can occur at the first few harmonics of the bounce
Computational ghost imaging (CGI) provides an elegant framework for indirect imaging,but its application has been restricted by low imaging performance.Herein,we propose a novel approach that significantly improves the imaging per-formance of CGI.In this
Flower-like tungsten disulfide (WS2) with a diameter of 5-10 μm is prepared by chemical vapor deposition (CVD).Scanning electron microscopy (SEM),energy dispersive spectrometer (EDS),Raman spectroscopy,and ultraviolet-visible(UV-vis) spectroscopy are used
The density functional theory method is utilized to verify the electronic structures of SiC nanotubes (SiCNTs) and SiC nanoribbons (SiCNRs) one-dimensional (1D) van der Waals homojunctions (vdWh) under an applied axial strain and an external electric fiel
The U-Nb alloy,as a kind of nuclear material with good corrosion resistance and mechanical properties,plays an important role in the nuclear industry.However,the experimental measurements and theoretical calculations of many parameters which are essential
The defect-related photoconductivity gain and persistent photoconductivity (PPC) observed in Ga2O3 Schottky pho-todetectors lead to a contradiction between high responsivity and fast recovery speed.In this work,a metal-semiconductor-metal (MSM) Schottky p
Studies show that the sample thickness is an important parameter in investigating the thermal transport properties of materials under high-temperature and high-pressure (HTHP) in the diamond anvil cell (DAC) device.However,it is an enormous challenge to m