论文部分内容阅读
In this study,truncated octahedron (TO) structure is selected for further analysis and we focus on 38-atom Pd-Pt-Ag trimetallic nanoalloys.The best chemical ordering structures of PdnAg32-nPt6 trimetallic nanoalloys are obtained at Gupta level.The structures with the lowest energy at Gupta level are then re-optimized by density functional theory (DFT)relaxations and DFT results confirm the Gupta level calculations with small shifts on bond lengths indicating TO structure is favorable for 38-atom of PdnAg32-nPt6 trimetallic nanoalloys.The DFT excess energy analysis shows that PdsAg24Pt6 composition has the lowest excess energy value in common with excess energy analysis at Gupta level.In Pd8Ag24Pt6 composition,eight Pd atoms are central sites of 8 (111) hexagonal facets of TO,24 Ag atoms locate on surface,and 6 Pt atoms locate at the core of the structure.It is also obtained that all of the compositions except Pd18Ag14Pt6 and Pd20Ag12Pt6 exhibit a octahedral Pt core.Besides,it is observed that there is a clear tendency for Ag atoms to segregate to the surface and also Pt atoms prefer to locate at core due to order parameter (R) variations.