论文部分内容阅读
GaN nanorods were synthesized by magnetron sputtering and ammonification system, and the thickness of Tb intermediate layer was changed to study the effect on GaN nanorods. The resultant was tested by scanning electron microscopy(SEM), X-ray diffraction(XRD),transmission electron microscopy(TEM), high-resolution transmission electron microscopy(HRTEM), and photoluminescence(PL) spectra. The results show that the thickness of Tb layer has an evident effect on the modality,quality, and luminescence properties of GaN nanorods. PL spectra at room temperature show a very strong emission peak at 368 nm and a weak emission peak at 387 nm, and the intensities of the peak for the produced samples reach the maximum when Tb layer is 20 nm. Finally, the optimal thickness of 20 nm of Tb intermediate layer for synthesizing GaN nanostructures is achieved.
GaN nanorods were synthesized by magnetron sputtering and ammonification system, and the thickness of Tb intermediate layer was changed to study the effect on GaN nanorods. The resultant was tested by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) spectra. The results show that the thickness of Tb layer has an evident effect on the modality, quality, and luminescence properties of GaN nanorods. at room temperature show a very strong emission peak at 368 nm and a weak emission peak at 387 nm, and the intensities of the peak for the produced samples reach the maximum when Tb layer is 20 nm. Finally, the optimal thickness of 20 nm of Tb intermediate layer for synthesizing GaN nanostructures is achieved.