论文部分内容阅读
为克服带钢热连轧层流冷却系统中大滞后环节产生的不利影响,提高控制精度,提出了将模糊RBF神经网络与Smith预估器相结合的方法。采用基于改进型模糊C-均值聚类算法的RBF神经网络建立预测模型。获得了较高的精度和较快的学习速度。改进后的模糊C-均值聚类算法具有更好的鲁棒性,且放松了隶属度条件,使得最终聚类结果对预先确定的聚类数目不敏感。将该控制器应用到卷取温度控制中,能把卷取温度控制在598~705℃的范围内,满足了实际生产的需要。