论文部分内容阅读
针对基于前馈神经网络的盲均衡算法中,BP优化算法具有收敛速度慢、易陷入局部极小的缺点,提出了一种新的盲均衡算法,该算法结合动量项前馈神经网络与传统恒模盲均衡算法的优点,将以前权值的调节量用于当前权值的修改过程,降低了算法对于误差曲面局部极值点的敏感性。仿真结果表明,该算法可有效抑制网络陷入局部极小,防止振荡,加快盲均衡器的收敛速度。