论文部分内容阅读
近几年来,深度神经网络在图像识别、语音识别、自然语言处理等众多领域取得了突破性的进展.互联网以及移动设备的快速发展极大地推进了图像应用的普及,也为深度神经网络的训练积累了大量数据.其中,大规模人工标注的数据是成功训练深度神经网络的关键.但随着数据规模的快速增长,人工标注图像的成本也越来越高,同时不可避免地产生标注错误,从而影响神经网络的训练.为此,提出了一种称为互补学习的方法,面向图像应用中深度神经网络的训练,将简单样本挖掘和迁移学习的思想相结合,利用少量人工标注的干净数据和大量带有噪声标注的数据,