论文部分内容阅读
传统的知识粗糙熵表征了知识整体的统计特征,是总体的平均不确定性的量度,知识和粗集的不确定性值被放大。从Pawlak拓扑的角度,给出了一种基于边界域的知识粗糙熵新定义,并修正了粗集粗糙熵的定义,集合的不确定性可以通过边界域来描述,能更精确的度量知识不确定性;证明了知识粗糙熵和修正后的粗集粗糙熵都随着信息粒度的变小而单调减少等重要结论。最后,通过弹簧振子系统定性仿真例子,结合定性推理技术,构造属性约简的启发式算法,消去定性描述中的冗余,获得了其系统的定性微分方程,说明了粗集理论在定性推理与定性仿真技术中