论文部分内容阅读
乳腺癌是易发生且致死率高的恶性肿瘤之一,及早诊断识别是降低致死率的关键.基于应用广泛的乳腺癌病理图像,结合卷积神经网络展开乳腺癌的识别研究.针对癌症图像细节和纹理特征难以识别的问题,采用插值处理将图像进行适当放大,以便研究分析.针对卷积神经网络参数庞大不易训练和不易硬件实现的问题,提出一种精简的5卷积层W型网络结构,具有较少的权重参数,可以降低时间和空间复杂度从而便于硬件实现.精度损失曲线测试和混淆矩阵实验结果表明,与传统顺序结构5卷积层神经网络相比,采用提出的网络使乳腺癌诊断识别的准确率提高4百分点,且具有较好的抗拟合效果.