论文部分内容阅读
提出了一种基于生成式对抗网络(GAN)和自注意力机制(self-attention mechanism)的单目视觉里程计方法,命名为SAGANVO(SAGAN visual odometry).该方法将生成式对抗网络学习框架应用于深度估计和视觉里程计任务中,通过GAN生成逼真的目标帧来准确求解出场景的深度图和6自由度位姿.与此同时,为了提高深度网络对场景细节、边缘轮廓的学习能力,将自注意力机制结合到网络模型中.最后,在公开数据集KITTI上展现了所提出的模型和方法的高质量结果,并与现有方法进行了对比