基于生成式对抗网络及自注意力机制的无监督单目深度估计和视觉里程计

来源 :机器人 | 被引量 : 1次 | 上传用户:liongliong546
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
提出了一种基于生成式对抗网络(GAN)和自注意力机制(self-attention mechanism)的单目视觉里程计方法,命名为SAGANVO(SAGAN visual odometry).该方法将生成式对抗网络学习框架应用于深度估计和视觉里程计任务中,通过GAN生成逼真的目标帧来准确求解出场景的深度图和6自由度位姿.与此同时,为了提高深度网络对场景细节、边缘轮廓的学习能力,将自注意力机制结合到网络模型中.最后,在公开数据集KITTI上展现了所提出的模型和方法的高质量结果,并与现有方法进行了对比
其他文献
室内移动机器人使用传统视觉SLAM算法在动态场景下进行位姿估计时精度低、鲁棒性差,其主要原因是错误地将运动的特征点加入了相机位姿计算.为了解决这一问题,本文将特征点分为静态特征点、状态未知点、可疑静态特征点、动态特征点和错误匹配点.其中,静态特征点使用严格的几何约束进行筛选,并将状态未知点使用多帧的观测信息区分为可疑静态特征点、动态特征点以及错误匹配点,并进行卡尔曼滤波.最后,将静态特征点、可疑静
谢谢,我很荣幸来到美丽的北京。三年前,习近平主席对APEC成员国说:“亚洲各国就像一盏盏明灯,只有串联并联起来,才能让亚洲的夜空灯火辉煌。”我出生在韩国,“一带一路”倡议
现有的绝大多数同步定位与地图构建(SLAM)方法是基于静态场景假设,场景中运动目标被视为干扰,它的存在会导致定位和建图精度下降甚至失败.而运动目标检测与跟踪在很多应用中又是必须的,却在求解SLAM问题时被滤除.针对这一问题,本文提出一种融合激光雷达和惯性传感器,可同时完成SLAM和运动目标检测与跟踪的方法.首先利用惯性传感器的观测结果来补偿激光雷达扫描过程中由于自身运动引起的运动失真,在运动补偿后