论文部分内容阅读
为了实现烟草不同品种的快速光谱鉴别,采用主成分分析法对光谱数据进行聚类分析,并将小波变换用于对大量光谱数据的压缩,同时结合神经网络建立烟草品种鉴别模型.该模型将压缩后的数据作为神经网络的输入,加速了神经网络的训练速度.通过对4个品种的80个烟草样本建立训练模型,并用每个品种5个样本,共20个烟草样本进行预测.结果表明,用该方法对本研究4个品种的烟草鉴别正确率达100%.说明该方法具有很好的分类和鉴别作用。为烟草品种的快速鉴别提供了一种新方法.