论文部分内容阅读
根据声道模型与AR模型的对应关系,提出一种可用于神经网络语音识别的新特征———语音信号的全局时频特征,从整体上描述LPC倒谱系数的变化规律.其特点是:(1)特征长度固定,为传统的静态神经网络应用于语音识别创造了良好条件;(2)与其他语音识别系统所用的神经网络相比,新特征极大地降低了神经网络的规模及训练时间;(3)基于新特征的系统的识别性能明显优于传统的HMM方法及GMDS算法.