论文部分内容阅读
Interracial structures and interactions of two-dimensional (2D) materials on solid substrates are of fundamental importance for fabrications and applications of 2D materials.However,selection of a suitable solid substrate to grow a 2D material,determination and control of 2D material-substrate interface remain a big challenge due to the large diversity of possible configurations.Here,we propose a computational framework to select an appropriate substrate for epitaxial growth of 2D material and to predict possible 2D material-substrate interface structures and orientations using density functional theory calculations performed for all non-equivalent atomic structures satisfying the symmetry constraints.The approach is validated by the correct prediction of three experimentally reported 2D material-substrate interface systems with only the given information of two parent materials.Several possible interface configurations are also proposed based on this approach.We therefore construct a database that contains these interface systems and has been continuously expanding.This database serves as preliminary guidance for epitaxial growth and stabilization of new materials in experiments.