论文部分内容阅读
The Wave-making characteristics of a moving body in a two-layer fluid with free surface is investigated numerically and experimentally. The numerical analysis is based on the modified layered boundary integral equation system. The wave characteristics on the free surface and interface generated by a moving sphere and an ellipsoid is numerically simulated in both finite depth and infinite depth of lower layer model. The numerical results of the sphere are compared with the analytical results for a dipole with the same velocity in a two-layer fluid of finite depth. The dependence of the wave systems and structures on the characteristic quantities is discussed. Three kinds of measurement techniques are used in model experiments on the intal waves generated by a sphere advancing in a two-layer fluid. The effects of the varying velocity and stratification on the wavelength, wave amplitudes and the maximum half angles of intal waves are analyzed qualitatively.