论文部分内容阅读
针对消防红外图像分辨率差、对比度低、信噪比低、视觉效果模糊、人体姿态复杂,多障碍物遮蔽、人体姿态不完整等特点。本文提出了一种基于U-Net网络的消防红外图像的人体检测算法,通过该算法解决了消防场景中人体姿态复杂,多障碍物遮蔽,人体形态不完整的困难。同时对比于传统目标检测算法以及YOLO v3算法,本文提出的算法在消防红外图像的人体检测上无论是检测的精度还是运算的实时性上都有大幅的提升。