论文部分内容阅读
We investigate the critical behaviour of an epidemical model in a diffusive population mediated by a static vector environment on a 2D network. It is found that this model presents a dynamical phase transition from disease-free state to endemic state with a finite population density. Finite-size and short-time dynamic scaling relations are used to determine the critical population density and the critical exponents characterizing the behaviour near the critical point. The results are compatible with the universality class of directed percolation coupled to a conserved diffusive field with equal diffusion constants.