论文部分内容阅读
研究了密度梯度对瑞利一泰勒不稳定性的致稳作用,采用有限元算法求解钱得拉塞卡方程本征值问题,得到不同密度分布下理想不可压流体力学量的扰动线性增长率及扰动速度分布。扰动增长率结果与修正的Lindl公式的计算结果比较发现:扰动分布的峰值位于密度梯度标长的取值位置处,波长与密度标长可比拟时,扰动增长率显著偏离Lindl公式,而长波和短波极限情况下,数值解和Lindl公式符合较好。