论文部分内容阅读
Background The etiologic agent of severe acute respiratory syndrome (SARS) has been confirmed to be a novel coronavirus (CoV), namely SARS-CoV. Developing safe and effective SARS-CoV vaccines is essential for us to prevent the possible reemergence of its epidemic. Previous experiences indicate that inactivated vaccine is conventional and more hopeful to be successfully developed. Immunogenicity evaluation of an experimental inactivated SARS-CoV vaccine in rabbits was conducted and reported in this paper.Methods The large-scale cultured SARS-CoV F69 strain was inactivated with 0.4% formaldehyde and purified, then used as the immunogen combined with Freund’s adjuvant. Eight adult New Zealand rabbits were immunized four times with this experimental inactivated vaccine. Twelve sets of rabbit serum were sampled from the third day to the seventy-fourth day after the first vaccination. The titers of specific anti-SARS-CoV IgG antibody were determined by indirect enzyme-linked immunosorbent assay, and the neutralizing antibody titers were detected with micro-cytopathic effect neutralization test.Results Rapid and potent humoral immune responses were induced by the inactivated SARS-CoV vaccine in all the eight test rabbits. Titers of both specific IgG antibody and neutralizing antibody peaked at about six weeks after first vaccination, with the maximum value of 1∶81 920 and 1∶20 480,respectively. After that, serum antibody levels remaine d at a plateau or had a slight decrease, though two boosters were given in the succedent 4 to 5 weeks. Cross neutralization response existed between SARS-CoV F69 strain and Z2-Y3 strain.Conclusions The inactivated SARS-CoV vaccine made from F69 strain owns strong immunogenicity, and the cross neutralization response between the two different SARS-CoV strains gives a hint of the similar neutralizing epit opes, which provide stable bases for the development of inactivated SARS-CoV vaccines.
Background The etiologic agent of severe acute respiratory syndrome (SARS) has been confirmed to be novel molecular coronavirus (CoV), developed SARS-CoV. Developing safe and effective SARS-CoV vaccines is essential for us to prevent the possible reemergence of its epidemic. Previous inventors indicate that inactivated vaccine is conventional and more hopeful to be successfully developed. Immunogenicity evaluation of an experimental inactivated SARS-CoV vaccine in rabbits was conducted and reported in this paper. Methods The large-scale cultured SARS-CoV F69 strain was inactivated with 0.4% formaldehyde and purified, then used as the immunogen combined with Freund’s adjuvant. Eight adult New Zealand rabbits were immunized four times with this experimental inactivated vaccine. Twelve sets of rabbit serum were sampled from the third day to the seventy-fourth day after the the first vaccination. The titers of specific anti-SARS-CoV IgG antibody were determined by indirect enzyme-linked immunosorben t assay, and the neutralizing antibody titers were detected with micro-cytopathic effect neutralization test. Results Rapid and potent humoral immune responses were induced by the inactivated SARS-CoV vaccine in all the eight test rabbits. Titers of both specific IgG antibody and neutralizing antibody peaked at about six weeks after first vaccination, with the maximum value of 1:81 920 and 1:20 480, respectively. After that, serum antibody levels remaine d at a plateau or had a slight decrease, though two boosters were given in the Consensus The inactivated SARS-CoV vaccine made from F69 strain owns strong immunogenicity, and the cross neutralization response between the two different SARS-CoV strains gives a hint of the similar neutralizing epitopes, which provide stable bases for the development of inactivated SARS-CoV vaccines.